Loan Computations

Kurt Bryan and SIMIODE

This is a notebook to illustrate loan payment computations for the "Money Matters" project in Chapter 2.

First, choose the interest rate " r ", initial borrowed amount " p 0 ", number of payments, and monthly payment "b":
$\ln [1]:=\quad r=0.03$
$\mathrm{p} 0=250000$
b $=1726.45$
payments $=180$
Loop over months, store balance in array " p ", indexed from $p[0]$ to p [payments].
$\ln [53]:=\quad$ p $=$ ConstantArray [0, payments];

```
StringForm["Month `` Balance ``", 0, NumberForm [N[p0], {6, 2}]]
```

$\mathrm{p} \llbracket 1 \rrbracket=(1+r / 12) * p 0-b ;$

$1, r * p 0 / 12$, NumberForm [N[p[1]], $\{6,2\}]]$
For $[k=2, k \leq p a y m e n t s, k++$,
$p \llbracket k \rrbracket=(1+r / 12) * p \llbracket k-1 \rrbracket-b ;$

$k, r * p \llbracket k-1 \rrbracket / 12$, NumberForm [N[p $\mathbb{k} \rrbracket]$, $\{6,2\}]$];
Print[s]
]

